Forecasting Using the Time Series Forecasting Model at SMEs Pempek Dang Tirta, Banyumas, Central Java
Main Article Content
Abstract
Erratic product demand makes manufacturers create strategies to minimize unsold products. Products that are stored for a long time can cause losses, so forecasting is needed to calculate future product demand. The method used in this study uses a time series forecasting model at SMEs Pempek Dang Tirta. The quantitative data used covers the period January 2022-August 2023. The results of the calculation of the naïve bayes, exponential smoothing, Simple Moving Average (SMA), and Least Square models are presented in the table. The MAD (Mean Absolute Deviation) value indicates that the average deviation of the yb data from its mean value is about 1060.82 and The least square value obtained is 306.44 indicating that it could be the constant or intercept value of the resulting regression model.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Arnomo, S. A., Yulia, & Ukas. (2023). Building The Prediction of Sales Evaluation on Exponential Smoothing using The OutSystems Platform. ILKOM Jurnal Ilmiah, 15(2), 222–228. http://dx.doi.org/10.33096/ilkom.v15i2.1529.222-228
Fan, Z. P., Che, Y. J., & Chen, Z. Y. (2017). Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis. Journal of Business Research, 74, 90–100. https://doi.org/10.1016/j.jbusres.2017.01.010
Ferbar Tratar, L., Mojškerc, B., & Toman, A. (2016). Demand forecasting with four-parameter exponential smoothing. International Journal of Production Economics, 181, 162–173. https://doi.org/10.1016/j.ijpe.2016.08.004
Fildes, R., Ma, S., & Kolassa, S. (2022). Retail forecasting: Research and practice. International Journal of Forecasting, 38(4), 1283–1318. https://doi.org/10.1016/j.ijforecast.2019.06.004
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting. OTexts: Melbourne, Australia.
Huang, T., Fildes, R., & Soopramanien, D. (2019). Forecasting retailer product sales in the presence of structural change. European Journal of Operational Research, 279(2), 459–470. https://doi.org/10.1016/j.ejor.2019.06.011
Juliana, L. J. L., Lubis, A. P., & Lubis, I. A. (2023). Implementation Of The Least Square Method To Forecast Cement Sales. Jurnal Ipteks Terapan, 17(1), 131-137. https://doi.org/10.22216/jit.v17i1.1625.
Karmaker, C. L. (2017). Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study. International Journal of Research in Industrial Engineering , 6(3), 184–192. https://doi.org/10.22105/riej.2017.49603
Katkar, V., Gangopadhyay, S. P., Rathod, S., & Shetty, A. (2015). Sales forecasting using data warehouse and Naïve Bayesian classifier. 2015 International Conference on Pervasive Computing: Advance Communication Technology and Application for Society, ICPC 2015, 00(c), 1–6. https://doi.org/10.1109/PERVASIVE.2015.7087133
Krishna, A., Akhilesh, V., Aich, A., & Hegde, C. (2018). Sales-forecasting of Retail Stores using Machine Learning Techniques. Proceedings 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions, CSITSS 2018, 160–166. https://doi.org/10.1109/CSITSS.2018.8768765
Ma, E., Liu, Y., Li, J., & Chen, S. (2016). Anticipating Chinese tourists arrivals in Australia: A time series analysis. Tourism Management Perspectives, 17, 50–58. https://doi.org/10.1016/j.tmp.2015.12.004
Makridakis, S., Hyndman, R. J., & Petropoulos, F. (2020). Forecasting in social settings: The state of the art. International Journal of Forecasting, 36(1), 15–28. https://doi.org/10.1016/j.ijforecast.2019.05.011
Nenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand forecasting in the fashion industry: A review. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56840
Niknam, A., Zare, H. K., Hosseininasab, H., Mostafaeipour, A., & Herrera, M. (2022). A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use? Sustainability (Switzerland), 14(9), 1–25. https://doi.org/10.3390/su14095412
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001
Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00329-2
Seyedan, M., Mafakheri, F., & Wang, C. (2023). Order-up-to-level inventory optimization model using time-series demand forecasting with ensemble deep learning. Supply Chain Analytics, 3, 100024. https://doi.org/10.1016/j.sca.2023.100024
Sohrabpour, V., Oghazi, P., Toorajipour, R., & Nazarpour, A. (2021). Export sales forecasting using artificial intelligence. Technological Forecasting and Social Change, 163(June 2020), 120480. https://doi.org/10.1016/j.techfore.2020.120480
Sun, Z. L., Choi, T. M., Au, K. F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46(1), 411–419. https://doi.org/10.1016/j.dss.2008.07.009
Svetunkov, I., Chen, H., & Boylan, J. E. (2023). A new taxonomy for vector exponential smoothing and its application to seasonal time series. European Journal of Operational Research, 304(3), 964–980. https://doi.org/10.1016/j.ejor.2022.04.040
Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3(February), 100026. https://doi.org/10.1016/j.sca.2023.100026
Verstraete, G., Aghezzaf, E. H., & Desmet, B. (2019). A data-driven framework for predicting weather impact on high-volume low-margin retail products. Journal of Retailing and Consumer Services, 48(August 2018), 169–177. https://doi.org/10.1016/j.jretconser.2019.02.019
Viverit, L., Heo, C. Y., Pereira, L. N., & Tiana, G. (2023). Application of machine learning to cluster hotel booking curves for hotel demand forecasting. International Journal of Hospitality Management, 111(March), 103455. https://doi.org/10.1016/j.ijhm.2023.103455
Widajanti, E., & Suprayitno, S. (2020). Implementasi Metode Least Square Untuk Memprediksi Penjualan Susu Perah (Studi Pada Kud Cepogo Kabupaten Boyolali). Research Fair Unisri, 4(1). https://doi.org/10.33061/rsfu.v4i1.3429
Xia, R., Zong, C., & Li, S. (2011). Ensemble of feature sets and classification algorithms for sentiment classification. Information Sciences, 181(6), 1138–1152. https://doi.org/10.1016/j.ins.2010.11.023
Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., & Yang, A. (2022). Comparative research on network intrusion detection methods based on machine learning. Computers and Security, 121, 102861. https://doi.org/10.1016/j.cose.2022.102861