Model Kinetika Laju Degradasi Karotenoid Pada Proses Evaporasi Pembuatan Konsentrat Tomat

Main Article Content

Ajeng Dyah Kurniawati


Konsentrat tomat adalah salah satu produk olahan tomat yang banyak digunakan di industri. Konsentrat tomat lebih banyak digunakan di industri karena memiliki umur simpan yang lebih lama sehingga lebih awet dibandingkan tomat segar serta mempermudah dalam proses distribusi dan penyimpanan. Evaporasi merupakan proses yang penting dalam pembuatan konsentrat tomat. Hal ini karena suhu yang digunakan pada proses evaporasi memungkinkan terjadinya kerusakan komponen pigmen karotenoid yang dapat mempengaruhi warna dan nilai gizi dari produk yang dihasilkan. Penelitian ini bertujuan untuk menentukan parameter kinetic pada reaksi degradasi thermal karotenoid pada proses evaporasi pembuatan konsentrat tomat. Pada penelitian ini, pengaruh suhu evaporasi pada kadar karotenoid dilakukan pada suhu 50 – 70 °C. Proses evaporasi mengakibatkan penurunan konsentrasi karotenoid pada produk akhir yang dihasilkan. Kinetika degradasi thermal karotenoid pada proses pembuatan konsentrat tomat ini mengacu pada orde reaksi satu dengan nilai R2 > 0.90. Model Arhennius mampu menjelaskan perubahan yang terjadi pada karotenoid selama proses evaporasi. Energi aktivasi dari reaksi degradasi karotenoid yang diperoleh adalah 73,03 KJ.mol-1.


Article Details



Camargo, W. P., & Camargo, F. P. (2017). A quick review of the production and commercialization of the main vegetables in Brazil and the world from 1970 to 2015. Horticultura Brasileira, 35, 160-166.

Dhakal, S., Balasubramaniam, V. M., Ayvaz, H., & Rodriguez-Saona, L. E. (2018). Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. Journal of food engineering, 224, 62-70.

Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M., & Amiot, M. J. (2007). Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry, 55(10), 4209-4216.

Gheonea, I., Aprodu, I., Enachi, E., Horincar, G., Bolea, C. A., Bahrim, G. E., Stănciuc, N. (2020). Investigations on thermostability of carotenoids from tomato peels in oils using a kinetic approach. Journal of Food Processing and Preservation, 44(1), e14303.

Goula, A. M., Adamopoulos, K. G., Chatzitakis, P. C., & Nikas, V. A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. Journal of Food Engineering, 74(1), 37-46.

Hayes, W. A., Smith, P. G., & Morris, A. E. J. (1998). The production and quality of tomato concentrates. Critical Reviews in Food Science and Nutrition, 38(7), 537-564.

Jing, S., Lasheng, Z., Wang, S., & Shi, H. (2020). Effect of ultra-high pressure technology on isomerization and antioxidant activity of lycopene in solanum lycopersicum. American Journal of Biochemistry and Biotechnology, 16(2), 270-279.

Jirasatid, S., Chaikham, P., & Nopharatana, M. (2018). Thermal degradation kinetics of total carotenoids and antioxidant activity in banana-pumpkin puree using Arrhenius, Eyring-Polanyi and Ball models. International Food Research Journal, 25(5).

Lavelli, V., & Sereikaitė, J. (2022). Kinetic study of encapsulated β-carotene degradation in dried systems: A review. Foods, 11(3), 437.

Liu, X., Liu, J., Bi, J., Cao, F., Ding, Y., & Peng, J. (2019). Effects of high pressure homogenization on physical stability and carotenoid degradation kinetics of carrot beverage during storage. Journal of food engineering, 263, 63-69.

Margean, A., Lupu, M. I., Alexa, E., Padureanu, V., Canja, C. M., Cocan, I., Poiana, M. A. (2020). An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice. Molecules, 25(7), 1669.

Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols

Munhoz, K. A. S. (2019). The tomato paste quality attributes along the industrial processing chain. African Journal of Food Science, 13(10), 215-224.

Ochida, C. O., Itodo, A. U., & Nwanganga, P. A. (2018). A review on postharvest storage, processing and preservation of tomatoes (Lycopersicon esculentum Mill). Asian Food Science Journal, 6(2), 1-10.

Ordóñez‐Santos, L. E., & Martínez‐Girón, J. (2020). Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice. International Journal of Food Science & Technology, 55(1), 201-210.

Qiu, J., Vuist, J. E., Boom, R. M., & Schutyser, M. A. (2018). Formation and degradation kinetics of organic acids during heating and drying of concentrated tomato juice. LWT, 87, 112-121.

Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., Sharifi-Rad, J. (2019). Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition, 62, 201-208.

Sharma, R., Kaur, D., Oberoi, D. P. S., & Sogi, D. S. (2008). Thermal degradation kinetics of pigments and visual color in watermelon juice. International Journal of Food Properties, 11(2), 439-449.

Shi, J., & Maguer, M. L. (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Critical reviews in food science and nutrition, 40(1), 1-42.

Song, X. D., Mujumdar, A. S., Law, C. L., Fang, X. M., Peng, W. J., Deng, L. Z., ... & Xiao, H. W. (2020). Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Drying Technology, 38(9), 1151-1164.

Suzery, M., Nudin, B., Bima, D. N., & Cahyono, B. (2020). Effects of Temperature and Heating Time on Degradation and Antioxidant Activity of Anthocyanin from Roselle Petals (Hibiscus sabdariffa L.). International Journal of Science, Technology & Management, 1(4), 288-238.

Tiwari, G., Slaughter, D. C., & Cantwell, M. (2013). Nondestructive maturity determination in green tomatoes using a handheld visible and near infrared instrument. Postharvest Biology and Technology, 86, 221-229.

Verbeyst, L., Bogaerts, R., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2013). Modelling of vitamin C degradation during thermal and high-pressure treatments of red fruit. Food and Bioprocess Technology, 6, 1015-1023.

Zepka, L. Q., & Mercadante, A. Z. (2009). Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chemistry, 117(1), 28-34.